Planar Elasticity (Work in Progress)

Description

This benchmark is the planar elastodynamic problem presented in Brugnoli2020 and discretized using the Arnold-Falk-Whinter weakly symmetric element Arnold2014. It corresponds to a mixed Hamiltonian formulation of linearized elasticity. Let $\Omega \subseteq \mathbb{R}^2$ be a Lipschitz domain and $\mathbb{T} = [0,T]$ for $T \in (0,\infty)$. Consider the system of coupled partial differential equations

\[\begin{aligned} \rho \frac{\partial}{\partial t} \bm{v}(t,\xi) &= \mathrm{div} \bm{\Sigma} \quad \text{in } (0,T] \times \Omega, \\ \mathcal{C}\frac{\partial}{\partial t} \bm{\Sigma} &= \mathrm{sym}\nabla \bm{v} \quad \text{in } (0,T] \times \Omega. \end{aligned}\]

The operators appearing in this formulation are the symmetric gradient $\mathrm{sym}\nabla = \frac{1}{2}(\nabla + \nabla^\top)$ and the row-wise tensor divergence $(\mathrm{Div} \bm{\Sigma})_i = \sum_j \partial_j \bm{\Sigma}_{ij}$. The velocity field $\bm{v}: \mathbb{T} \times \Omega \to \R^2$ and the symmetric stress tensor field $\bm{\Sigma}: \mathbb{T} \times \Omega \to \R^{2\times 2}_{\text{sym}}$ are the unknowns of the problem. The physical parameters are the density $\rho$ and

\[\mathcal{C}= \frac{1}{2\mu}\left[(\cdot) - \frac{\lambda}{2\mu + 2\lambda} \mathrm{Tr}(\cdot) \mathbf{I}\right],\]

the isotropic compliance tensor, where $\mu$ and $\lambda$ are the Lamé coefficients and $\mathbf{I}$ is the identity in $\R^2$.

The system can be compactly rewritten as

\[\mathcal{E}\partial_t \bm{x} = \mathcal{J}\bm{x} \quad \text{in } (0,T] \times \Omega.\]

where $\mathcal{E}$ is a bounded, symmetric and uniformly positive operator and $\mathcal{J}$ is a formally skew-adjoint operator.

The PDE is boundary controlled via the Dirichlet boundary condition

\[ \bm{v}(t,\xi) = u_D(t, \xi), \quad \text{on} (0,T] \times \partial \Omega\]

as well initial conditions $\bm{v}(0,\cdot) = \bm{v}^0 : \partial \Omega \to \R^2$, $\bm{\Sigma}(0,\cdot) = \bm{\Sigma}^0 : \partial \Omega \to \R^{d \times d}_{\mathrm{sym}}$. The construction of conforming finite elements for symmetric tensors is involved. Therefore, a weakly symmetric finite element formulation will be employed, based on the following decomposition of the symmetric gradient

\[ \mathrm{sym}\nabla \bm{v} = \nabla \bm{v} - \mathrm{skw}(\nabla \bm{v})\]

where $skw \bm{A} = (\bm{A} - \bm{A}^\top)/2 \in \R^{2\times 2}_{\mathrm{skw}}$ is the skew-symmetric part of a matrix. To introduce the weak form, define the Hilbert spaces

\[\begin{aligned} {V} &:= L^2(\Omega; \R^2), \\ {M} &:= H^{\mathrm{div}}(\Omega; \R^{2 \times 2}) = \{\bm{A} \in L^2(\Omega; \R^{2\times 2})\, | \, \mathrm{div}\bm{A} \in L^2(\Omega; \R^{2})\}, \\ {K} &:= L^2(\Omega; \R^{2\times 2}_{\mathrm{skw}}), \\ {U} &:= H^{1/2}(\partial\Omega; \R^{2}), \end{aligned}\]

To determine the weak form of the PDE, the first equation is multiplied by a test function $\bm{\psi}_v \in {V}$. The second equation is multiplied by $\bm{\Psi}_{\Sigma} \in M$ and integrated by parts. A third equation imposes the symmetry weakly by taking the inner product between a skew-symmetric test function and the stress tensor. The weak formulation therefore reads: given the initial conditions and the input $\bm{u}_D \in {U}$ find $\bm{v} \in {V}, \; \bm{\Sigma} \in {M}, \; \bm{R} \in {K}$ such that

\[\begin{aligned} \int_\Omega \bm{\psi}_v \cdot \partial_t \bm{v} dx &= \int_\Omega \bm{\psi}_v \cdot \mathrm{Div} \bm{\Sigma} dx \qquad \forall \bm{\psi}_v \in \mathcal{V}, \\ \int_\Omega \bm{\Psi}_\Sigma : \partial_t \bm{\Sigma} dx + \int_\Omega \bm{\Psi}_\Sigma : \partial_t \bm{R} dx &= -\int_\Omega \mathrm{Div} \bm{\psi}_\Sigma \cdot \bm{v} dx + \left\langle\bm{\psi}_\Sigma \cdot \bm{n}, \bm{u}_D\right\rangle \qquad \forall \bm{\psi}_v \in \mathcal{V}, \\ \int_{\Omega} \bm{\Psi}_R : \partial_t \bm{\Sigma} \qquad \forall \bm{\Psi}_R \in \mathcal{K} \end{aligned}\]

where $\bm{A} := \bm{B} = \sum\limits_{i,j} \bm{A}_{ij} \bm{B}_{ij}$ denotes the tensor contraction and $\left\langle \cdot, \cdot \right\rangle$ denotes a duality pairing between $\mathcal{U}$ and its topological dual $\mathcal{U} = H^{-1/2}(\partial\Omega; \R^{2})$. Consider a regular triangulation $\mathcal{T}_h$ with elements $T$. At the boundary $\partial\Omega$, the triangulation gives rise to boundary edges $\mathcal{E}_h^\partial$ with edges $E^\partial$. The following conforming finite element spaces are used to discretize the weak formulation

\[\begin{aligned} V_h &= \{\bm{v}_h \in L^2(\Omega; \R^2)| \; \forall T \in \mathcal{T}_h, \bm{v}_h|_T \in \mathrm{DG}_{k-1}^2\}, \\ M_h &= \{\bm{\Sigma}_h \in H^{\mathrm{div}}(\Omega; \R^{2 \times 2})| \; \forall T \in \mathcal{T}_h \; \text{ and for } i=1,2, (\bm{\Sigma}_{i1, h}, \; \bm{\Sigma}_{j2, h})|_T \in \mathrm{BDM}_{k}\}, \\ K_h &= \{\bm{R}_h \in L^2(\Omega; \R^{2\times 2}_{\mathrm{skw}})| \; \forall T \in \mathcal{T}_h, \bm{R}_h|_T \in \mathrm{DG}_{k-1}\}, \\ U_h &= \{u_{D, h} \in H^{1/2}(\partial\Omega; \R^2)| \; \forall E^\partial \in \mathcal{E}_h^\partial, \bm{u}_{D, h}|_{E^\partial} \in \mathrm{CG}_{k}\}, \end{aligned}\]

where $k \ge 1$ is the polynomial degree of the finite elements and the acronyms stand for

  • DG: the discontinous galerkin finite element space;
  • BDM: the Brezzi-Douglas-Marini space;
  • CG: Lagrange elements.

Inserting the finite element approximation into the weak formulation, the following port-Hamiltonian system is obtained

\[\begin{aligned} \mathbf{E} \dot{\mathbf{x}}(t) &= \mathbf{J}\mathbf{x}(t) + \mathbf{B} \mathbf{u}_D(t), \\ \mathrm{y}(t) &= \mathbf{B}^\mathsf{T} \mathbf{x}(t), \end{aligned}\]

with

\[\begin{aligned} \mathbf{E} := \begin{bmatrix} \mathbf{M}_\rho & 0 & 0 \\ 0 & \mathbf{M}_{\mathcal{C}} & \mathbf{A}_{\lambda}^\mathsf{T} \\ 0 & \mathbf{A}_{\lambda} & 0 \end{bmatrix}, \quad \mathbf{J} := \begin{bmatrix} 0 & \mathbf{D}_{\mathrm{div}} & 0 \\ - \mathbf{D}_{\mathrm{div}}^\mathsf{T} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{B} := \begin{bmatrix} 0 \\ \mathbf{B}_D \\ 0 \end{bmatrix}. \end{aligned}\]

Parameters

For this benchmark, a square domain $\Omega = [0,1]^2$ is considered. Moreover, different discretization levels are available, resulting in systems with state-space dimensions $n=1260$ (5 elements per side and $k=2$), $n = 1880$ (10 elements per side and $k=1$), and $n = 4920$ (10 elements per side and $k=2$). These discretizations have been obtained using the python interface of FEniCS. The following fixed parameters have been chosen:

  • $\lambda = 20$,
  • $\mu = 4$
  • $\rho = 1$,

Interface

The system matrices $E, J, R,$ and $B$ can be generated by the following function call.

using PortHamiltonianBenchmarkSystems
E, J, B = elasticity2Dafw_model()

The free parameters are given as named arguments. Note that $n \in \{ 1260, 1880, 4920 \}$.

using PortHamiltonianBenchmarkSystems
E, J, R, B = elasticity2Dafw_model(n = 1260)
H(s) = B'*((s*E-(J-R))\B)

Here H is the transfer function.

Missing docstring.

Missing docstring for elasticity2Dafw_model(). Check Documenter's build log for details.

References

@article{Arnold2014,
   author  = {D. Arnold and J. Lee},
   issue   = {6},
   journal = {SIAM Journal on Numerical Analysis},
   pages   = {2743-2769},
   title   = {Mixed Methods for Elastodynamics with Weak Symmetry},
   volume  = {52},
   url     = {https://epubs.siam.org/doi/10.1137/13095032X},
   year    = {2014}
   }

@phdthesis{Brugnoli2020,
  author = {A.~Brugnoli},
  title  = {A port-{H}amiltonian formulation of flexible structures. Modelling and structure-preserving finite element discretization},
  school = {Universit\'e de Toulouse, ISAE-SUPAERO, France},
  year   = {2020}
  }