References
- [1]
- S. Gugercin, R. V. Polyuga, C. Beattie and A. van der Schaft. Structure-Preserving Tangential Interpolation for Model Reduction of Port-Hamiltonian Systems. Automatica 48, 1963–1974 (2012).
- [2]
- R. Altmann, V. Mehrmann and B. Unger. Port-Hamiltonian Formulations of Poroelastic Network Models. Mathematical and Computer Modelling of Dynamical Systems 27, 429–452 (2021).
- [3]
- R. V. Polyuga and A. van der Schaft. Structure Preserving Model Reduction of Port-Hamiltonian Systems by Moment Matching at Infinity. Automatica 46, 665–672 (2010).
- [4]
- R. W. Freund. The SPRIM Algorithm for Structure-Preserving Order Reduction of General RCL Circuits. In: Model Reduction for Circuit Simulation, edited by P. Benner, M. Hinze and E. J. ter Maten (Springer Netherlands, Dordrecht, 2011); pp. 25–52.
- [5]
- H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke and V. Mehrmann. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing 40, A331-A365 (2018).
- [6]
- A. Brugnoli. A port-Hamiltonian formulation of flexible structures. Modelling and structure-preserving finite element discretization. Ph.D. Thesis, Université de Toulouse, ISAE-SUPAERO, France (2020).
- [7]
- D. N. Arnold and J. J. Lee. Mixed Methods for Elastodynamics with Weak Symmetry. SIAM Journal on Numerical Analysis 52, 2743–2769 (2014).
- [8]
- A. Serhani, G. Haine and D. Matignon. Anisotropic Heterogeneous N-D Heat Equation with Boundary Control and Observation: I. Modeling as Port-Hamiltonian System. IFAC-PapersOnLine 52, 51–56 (2019).
- [9]
- A. Serhani, G. Haine and D. Matignon. Anisotropic Heterogeneous N-D Heat Equation with Boundary Control and Observation: II. Structure-preserving Discretization. IFAC-PapersOnLine 52, 57–62 (2019).
- [10]
- A. Serhani, D. Matignon and G. Haine. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. In: Geometric Science of Information, Vol. 11712, edited by F. Nielsen and F. Barbaresco (Springer International Publishing, Cham, 2019); pp. 549–558.
- [11]
- A. Serhani, D. Matignon and G. Haine. Partitioned Finite Element Method for Port-Hamiltonian Systems with Boundary Damping: Anisotropic Heterogeneous 2D Wave Equations. IFAC-PapersOnLine 52, 96–101 (2019).